Hardware Reduction for a Retrodirective System

Darren S. Goshi, Kevin M.K.H. Leong, and Tatsuo Itoh

Electrical Engineering Department University of California, Los Angeles

Motivation

Interrogator

- Increasing application for RFID passive transponders with various
 functionality
- Identification Friend of Foe (IFF)
- high speed secure source
 tracking
- Simple low-cost high-performance
- systems desired

- <u>Retrodirective arrays (RDAs)</u> are ideal candidates for passive transponders
 Automatic bigb aread directive responses to interresponder
- ✓ Automatic high-speed directive response to interrogation over omni-directional coverage
- ✓ Goal: reduce/simplify hardware requirement

 $f_{LO} = 2f_{RF}$

Switched Antenna Retrodirective Concept

Switching Feed Network

- Symmetric unconventional feed network Z_o @ all T-Junctions
- Always matched to a single antenna
- Relies on open circuit approximation of switch in "off" state

System Operation

Phase-conjugated retransmitted signal at each channel:

Switching Scheme Integrated with Sparse Array

Built-in Modulation Scheme

Summary

- Switching scheme offers an N to 1 hardware reduction
- Maintaining directive transmission response based on array theory
- Flexible scheme allows for integration of amplification and external

LO elimination

