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Different Approaches of Different Approaches of LHMsLHMs

UCSD, 2D-LH

LH definition: materials with
and unit-cell << λ effective / macroscopic / homogeneous

Historical Milestones
• 1968 : theoretical analysis of hypothetical LH materials by Veselago
• 1996/9 : introduction of electric (ε<0) / magnetic (µ<0) plasmon by Pendry
• 2000 : experimental demonstration of LH structure by Smith

• approach: no simple/rigorous analysis
& no design method

• structures: RESONANT very lossy
& narrow bandwidth
& highly dispersive

0 and 0    0p gv v nε µ< < ⇒ − → <

• approach: Transmission line analysis
& circuit design methods

• structures: NON-RESONANT low loss
& broad bandwidth
& moderate dispersionBACKWARD WAVES: S. Ramo, J.R. Whinery and T. Van Duzer,

“Fields and waves in communication electronics”, Wiley, 1994 

“BACKWARD WAVES”

( )CjZ ′=′ ω1

high-pass
( )LjY ′=′ ω1

Resonant Structure Approach Transmission Line Approach
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CRLH TL and Dominant Mode LW Antenna ApplicationCRLH TL and Dominant Mode LW Antenna Application
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Motivation of VoltageMotivation of Voltage––Scanned LW AntennaScanned LW Antenna

Conventional LWA
Frequency dependent scanning

Conventional Electrically-Scanned LWA
Frequency independent scanning
Only two discrete states are possible
Waveguide configuration with PIN diode

Novel Electronically–Scanned  LWA
Frequency independent scanning Efficient Channelization
Continuous scanning capability
Microstrip technology Low profile

Conventional Magnetically-Scanned LWA
Frequency independent scanning
Biasing DC magnetic field NOT practical
Waveguide configuration

R. E. Horn, et. al, “Electronic modulated beam steerable silicon waveguide array antenna,” IEEE Tran. Microwave Theory Tech.
H. Maheri, et. al, “Experimental studies of magnetically scannable leaky-wave antennas having a corrugated ferrite slab/dielectric layer structure,” IEEE Trans. AP.
L. Huang, et. al, “An electronically switchable leaky wave antenna,” IEEE Trans. AP. 
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Principle of VoltagePrinciple of Voltage––Scanned LeakyScanned Leaky––Wave AntennaWave Antenna

Scanning angle is dependent on inductances and capacitances
Introducing varactor diodes 

Capacitive parameters are controlled by voltages
Dispersion curves are shifted vertically as bias voltages are varied
Radiating angle becomes a function of the varactor diode’s voltages

Scanning angle is dependent on inductances and capacitances
Introducing varactor diodes 

Capacitive parameters are controlled by voltages
Dispersion curves are shifted vertically as bias voltages are varied
Radiating angle becomes a function of the varactor diode’s voltages
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BeamwidthBeamwidth Control Capability: PrincipleControl Capability: Principle

1U 2U 3U 4U 5U 6U

0V 0V 0V 0V 0V 0V

Beamwidth

1U 2U 3U 4U 5U 6U

1V 2V 3V 4V 5V 6V

Beamwidth

Uniform biasing Non-uniform biasing

Uniformly biased periodic TL
Each unit cell radiates toward the same angle
High directivity

Non-Uniformly biased periodic TL
Each unit cell radiates toward different angles
Beamwidth is determined by the superposition of each cell
Broader beamwidth

Uniformly biased periodic TL
Each unit cell radiates toward the same angle
High directivity

Non-Uniformly biased periodic TL
Each unit cell radiates toward different angles
Beamwidth is determined by the superposition of each cell
Broader beamwidth
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Reverse biasing to Varactors
Anodes of varactors : GND   
Cathodes of varactors: Biasing

The cathodes of three varactors in the same direction
Only one bias circuitry in unit cell

Series and Shunt Varactors
Fairly constant characteristic impedance
Additional degree of freedom for wider scanning range

Back to back configuration of two series varactors
Fundamental signals : in phase and add up
Harmonic signals: out of phase and cancel

Reverse biasing to Varactors
Anodes of varactors : GND   
Cathodes of varactors: Biasing

The cathodes of three varactors in the same direction
Only one bias circuitry in unit cell

Series and Shunt Varactors
Fairly constant characteristic impedance
Additional degree of freedom for wider scanning range

Back to back configuration of two series varactors
Fundamental signals : in phase and add up
Harmonic signals: out of phase and cancel
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Analysis with Parameter ExtractionAnalysis with Parameter Extraction
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Analysis with Parameter ExtractionAnalysis with Parameter Extraction
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MoMMoM FullFull--Wave SimulationWave Simulation

F e edF ee d F e ed F ee d

Backward Propagating Capability @ higher applied voltage (15 V) Backward Propagating Capability @ higher applied voltage (15 V) 

FeedFeed Feed Feed

Forward Propagating Capability @ lower applied voltage (0 V)   Forward Propagating Capability @ lower applied voltage (0 V)   
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30 Cell Leaky30 Cell Leaky––Wave Antenna ImplementationWave Antenna Implementation

Scanning Range ∆θ = 99º (-49º to +50º) 
Backward, forward, and broadside

Biasing Range ∆V = 21 V ( 0 to 21 V)
Fixed operating frequency : 3.33 GHz
Maximum Gain: 18 dBi at broadside
Antenna dimension: 

Scanning Range ∆θ = 99º (-49º to +50º) 
Backward, forward, and broadside

Biasing Range ∆V = 21 V ( 0 to 21 V)
Fixed operating frequency : 3.33 GHz
Maximum Gain: 18 dBi at broadside
Antenna dimension: 
38.34   (5 .87 )strip
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Measured S Parameters versus FrequencyMeasured S Parameters versus Frequency
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Performance as a LW AntennaPerformance as a LW Antenna

High directivity : One of attractive characteristic of LW antenna

: Achieved by increasing the number of cells Large radiation aperture

Antenna dimension :

Maximum Gain : 18 dBi at broadside ( V = 3.5 V )

High directivity : One of attractive characteristic of LW antenna

: Achieved by increasing the number of cells Large radiation aperture

Antenna dimension :

Maximum Gain : 18 dBi at broadside ( V = 3.5 V )
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BeamwidthBeamwidth Control Capability: PredictionControl Capability: Prediction

N: the number of elements
d: the distance of unit cell
fn (θV): the normalized beam pattern function
An: the attenuation factor
wn(θV): the weighting factor
αn: the attenuation constant at the nth cell
Since the amplitude factor exponentially decreases as n increases, 
θv,n’s from the onset cells are dominant factors. 

N: the number of elements
d: the distance of unit cell
fn (θV): the normalized beam pattern function
An: the attenuation factor
wn(θV): the weighting factor
αn: the attenuation constant at the nth cell
Since the amplitude factor exponentially decreases as n increases, 
θv,n’s from the onset cells are dominant factors. 

Approximation method
Superposition of each beam pattern
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BeamwidthBeamwidth Tuning Capability: MeasurementTuning Capability: Measurement

Less power is radiated at the end of LW antenna
The first row becomes dominant
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Nonlinear Effects of Nonlinear Effects of VaractorsVaractors: Two Tone Test: Two Tone Test
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Two tone (3.329 GHz and 3.331 GHz) Test
at broad side ( V = 3.5 V )
the proposed antenna used as both TX and RX   
IIP3 = 25.3 dBm as TX antenna 

Two tone (3.329 GHz and 3.331 GHz) Test
at broad side ( V = 3.5 V )
the proposed antenna used as both TX and RX   
IIP3 = 25.3 dBm as TX antenna 
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Nonlinear Effects of Nonlinear Effects of VaractorsVaractors: BPSK Data Transmission: BPSK Data Transmission
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BPSK (10 Mbps ) Data Transmission Test 
at broad side ( V = 3.5 V )
the proposed antenna used as TX and RX
successfully recovered in both cases

Nonlinear effects are negligible 
as antenna applications in the far field region

BPSK (10 Mbps ) Data Transmission Test 
at broad side ( V = 3.5 V )
the proposed antenna used as TX and RX
successfully recovered in both cases

Nonlinear effects are negligible 
as antenna applications in the far field region
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ConclusionsConclusions

Novel Metamaterial-Based Electronically-Controlled TL

Continuous Scanning Leaky-Wave Antenna

Radiation Angle Control at Uniform Biasing

Beamwidth Control at Non-uniform Biasing

Nonlinear Effects of Varactors Negligible


