A Single RF Channel Smart Antenna Receiver Array with Digital Beamforming

Darren Goshi, Yuanxun (Ethan) Wang, Tatsuo Itoh

University of California, Los Angeles Electrical Engineering Dept. Los Angeles, CA

University of California, Los Angeles

✓ Reduction in power dissipation

✓ Maintains complete functionality

as with typical smart antenna arrays

UCLA

University of California, Los Angeles

System Principles

System Principles

Sampling Frequency:

$$f_s \ge B \times N$$

LPF Cutoff Frequency:

$$\frac{B}{2} < f_{lpf} < f_s - \frac{B}{2}$$

System Principles

University of California, Los Angeles

4-Element Prototype Hardware

L.C.A

Non-conventional Feed Network

Always Matched Feed Network

- Only one active channel at each instant
- All lines at T-junction matched to Zo
- No loss compared with 6 dB loss of Wilkinson dividers

University of California, Los Angeles

Circuit Schematic

Digital Data Recovery

DOA Estimation and Synthesized Patterns

Spatial Filtering

Spatial Filtering

Conclusion

Measured 20 MHz switching rate

DOA Estimation and Beamforming

Recovered up to 1 Mbps digital

data

Demonstrated full smart antenna

functionality

Other Works

Slot Antenna Based SMILE Array

- Compact design
- Series fed PIN diode switching

≻2-D Configuration

✓ Increase scanning flexibility for possible radar

application

